REFERENCE COPY Do Not Remove from the Library U.S. Fish and Wildlife Service National Wetlands Research Center Biological Report 82(11.41) February 1985 700 Cajun Dome Boulevard Lafayette, Louisiana 70506 TR EL-82-4 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic) # HARD CLAM Fish and Wildlife Service Coastal Ecology Group Waterways Experiment Station U.S. Department of the Interior U.S. Army Corps of Engineers This is one of the first reports to be published in the new "Biological Report" series. This technical report series, published by the Research and Development branch of the U.S. Fish and Wildlife Service, replaces the "FWS/OBS" series published from 1976 to September 1984. The Biological Report series is designed for the rapid publication of reports with an application orientation, and it continues the focus of the FWS/OBS series on resource management issues and fish and wildlife needs. Biological Report 82(11.41) TR EL-82-4 February 1985 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic) HARD CLAM by Jon G. Stanley Maine Cooperative Fishery Research Unit 313 Murray Hall University of Maine Orono, ME 04469 Project Officer John Parsons National Coastal Ecosystems Team U.S. Fish and Wildlife Service 1010 Gause Boulevard Slidell, LA 70458 Performed for Coastal Ecology Group Waterways Experiment Station U.S. Army Corps of Engineers Vicksburg, MS 39180 and National Coastal Ecosystems Team Division of Biological Services Research and Development Fish and Wildlife Service U.S. Department of the Interior Washington, DC 20240 This series should be referenced as follows: U.S. Fish and Wildlife Service. 1983-19_. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates. U.S. Fish Wildl. Serv. Biol. Rep. 82(11) U.S. Army Corps of Engineers, TR EL-82-4. This profile should be cited as follows: Stanley, J.G. 1985. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (mid-Atlantic) -- hard clam. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.41). U.S. Army Corps of Engineers, TR EL-82-4. 24 pp. #### **PREFACE** This species profile is one of a series on coastal aquatic organisms, principally fish, of sport, commercial, or ecological importance. The profiles are designed to provide coastal managers, engineers, and biologists with a brief comprehensive sketch of the biological characteristics and environmental requirements of the species and to describe how populations of the species may be expected to react to environmental changes caused by coastal development. Each profile has sections on taxonomy, life history, ecological role, environmental requirements, and economic importance, if applicable. A three-ring binder is used for this series so that new profiles can be added as they are prepared. This project is jointly planned and financed by the U.S. Army Corps of Engineers and the U.S. Fish and Wildlife Service. Suggestions or questions regarding this report should be directed to one of the following addresses. Information Transfer Specialist National Coastal Ecosystems Team U.S. Fish and Wildlife Service NASA-Slidell Computer Complex 1010 Gause Boulevard Slidell, LA 70458 or U.S. Army Engineer Waterways Experiment Station Attention: WESER-C Post Office Box 631 Vicksburg, MS 39180 # **CONVERSION TABLE** # Motorio to II C. Custo | | Metric to U.S. Customary | | |---|--|--| | <u>Multiply</u> | <u>By</u> | To Obtain | | millimeters (mm)
centimeters (cm)
meters (m)
kilometers (km) | 0.03937
0.3937
3.281
0.6214 | inches
inches
feet
miles | | square meters (m²)
square kilometers (km²)
hectares (ha) | 10.76
0.3861
2.471 | square feet
square miles
acres | | liters (1)
cubic meters (m ³)
cubic meters | 0.2642
35.31
0.0008110 | gallons
cubic feet
acre-feet | | milligrams (mg)
grams (g)
kilograms (kg)
metric tons (t)
metric tons
kilocalories (kcal) | 0.00003527
0.03527
2.205
2205.0
1.102
3.968 | ounces ounces pounds pounds short tons British thermal units | | Celsius degrees | 1.8(°C) + 32 | Fahrenheit degrees | | | U.S. Customary to Metric | | | inches
inches
feet (ft)
fathoms
miles (mi)
nautical miles (nmi) | 25.40
2.54
0.3048
1.829
1.609 | millimeters centimeters meters meters kilometers kilometers | | square feet (ft ²)
acres
square miles (mi ²) | 0.0929
0.4047
2.590 | square meters
hectares
square kilometers | | gallons (gal)
cubic feet (ft³)
acre-feet | 3.785
0.02831
1233.0 | liters
cubic meters
cubic meters | iv grams kilograms metric tons kilocalories 28.35 0.4536 0.9072 0.2520 ounces (oz) pounds (lb) short tons (ton) Fahrenheit degrees British thermal units (Btu) # CONTENTS | <u>Page</u> | |------------|------|-------------|------------|-------------|-----|------|-----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------------| | PREF | ACE | iii | | CONV | /ERS | ION | F# | ICT | ORS | | | | | | • | | | | • | | • | | • | • | | | • | | • | • | • | • | | iv | | ACKN | 10WL | EDG | MEI | NTS | | | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | ٧i | | NOME | NCL | ATUI | RE, | /TA | 10X | 101 | 4Y, | /R | ΑN | GE | | | | • | | | | | | | | | | | | | | | | 1 | | MORF | PHOL | 0GY | /[[| DEN | TIF | 10 | `AC | П | ON | Δ | ID | S | | • | | | • | | • | | | • | | | | • | | | | 1 | | REAS | ON | FOR | ١١ | NCL | USI | 01 | ١. | ľΝ | S | ER | IE | S | | | | | | | | | | | | | • | | • | | | 2 | | LIFE | : HI | ST0 | ٩Y | | | | | | | | | | | • | ٠ | | | • | • | | • | • | | | • | • | | • | | 2 | | Sp | awn | ing | | | | | | | | | | | | | • | | | | | | | | | | | | | | | 2 | | Fέ | ecun | dit | y a | and | Ed | 209 | 5 | | | | | | | | | | | | | | | • | | | | • | | | | 3 | | La | arva | е. | | | | | | • | | | | | | | • | | | | | | | • | | | • | • | • | • | | 3 | | Jι | iven | ile | S | eed | C. | l ar | η | 4 | | | dult | 4 | | COMM | 1ERC | IAL | /SI | POR | TF | - 15 | SHI | ER | ΙE | S | 5 | | | nell | 5 | | | opu1 | 9 | | GROV | VTH. | CHA | RAC | CTÉ | RIS | ST | IC: | S | 10 | | ECOL | 11 | | | ood | 11 | | P, | reda | tio | n. | _ | ; | | | | | | | | - | | | | | | | | | | | | | | | | | 11 | | ENV | LBUN | MFN | TAI | R | FOL | H | RFI | МF | ΝT | Ś | • | • | Ī | • | - | | • | • | | | | | | | • | • | | | | 12 | | | empe | 12 | | Ġ. | alin | itu | ur | • | • | • | • | • | • | • | • | • | • | • | • | • | • | · | • | • | Ī | • | • | Ī | | Ī | • | • | | 13 | | υ.
20 | isso | Jua | ٠, | Դ ., | 401 | • • | • | • | ٠ | • | 13 | | c. | ıbst | 224 | u ' | o x y | yeı | 1 | • | 14 | | <u>ا</u> ر | 1020 | rat | ٠. | • | | | U T. | urre | 2105
416 | • | 15 | | - 11 | urbi | dit | y . | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 15 | | н | abit | at | Αſ | ter | ·at | 10! | 71 | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | 13 | | LITE | ERAT | URE | С | I TE | D | _ | 17 | #### **ACKNOWLEDGMENTS** Thanks are due to Robert L. Dow, Maine Department of Marine Resources, Augusta, for helpful information; and Herbert Hidu, University of Maine, Michael Castagna, Virginia Institute of Marine Sciences, and John R. Moring, Maine Cooperative Fish and Wildlife Unit, University of Maine, for reviewing the manuscript. McHugh et al. (1982) was a major source of information. Figure 1 is used with the permission of Grass Medical Instruments and the artist, Trudy Nicholson. Figure 4 is reproduced with permission from the General Secretary of the Counseil International Pour L'Exploration de la Mer. Figure 1. The hard clam. #### HARD CLAM #### NOMENCLATURE/TAXONOMY/RANGE Scientific name Mercenaria mercenaria L. Widely known as Venus mercenaria before Wells (1957) reassigned the species to the genus Linneaus originally applied Preferred common names . . Quahog in the Northern United States, hard clam in the Southern United States (Figure 1) Other common names Quahaug, hard-shelled clam, round clam, cherrystone clam, little-necked clam Class Bivalvia (Pelecypoda) Order Eulamellibranchia Suborder Heterodonta Family Veneridae Geographical range: The hard clam lives in intertidal areas and subtidal waters to depths as great as 15 m along the Atlantic and Gulf coasts from the Gulf of St. Lawrence to Texas (Abbott 1974). It is most abundant from Massachusetts to Virginia and has been introduced to Europe and California. A
similar species (M. campechiensis) that lives in coastal waters from North Carolina southward to Florida and Texas is also called the hard clam. Abbott (1974) stated that M. campechiensis may be a subspecies of M. mercenaria because they hybridize. #### MORPHOLOGY/IDENTIFICATION AIDS The hard clam has a thick shell, a violet interior border, and short siphons (Verrill 1873; Stanley 1970; Morris 1973). The mean length of the thick solid shell is usually 60 to 70 mm, but sometimes reaches 120 to 130 mm. The ratios of length (L), height (H), and width (W) are: L/H = 1.25; H/W = 1.52; L/W = 1.90. The thickness index (ratio of shell volume to internal volume) is 0.60. The external surface has numerous concentric lines that are conspicuous and closely spaced near the outer margins, but more widely spaced around umbo. especially in younger shells. The center of each valve is smoother than the distal portion. The umbo is far anterior and projects toward the front of the shell. The shell is elliptical, somewhat pointed posteriorly, and has a grayish-white exterior and a white interior with a dark violet border near the margins. The colored part of the shell was fashioned into wampum by the American Indians for use as money, hence the scientific name (Morris 1973). interior ventral margins are denticulate. The internal anatomy also has discharacteristics (Verrill 1873). Short siphons are united from their bases to near the ends; the incurrent siphon has a short fringe of tentacles. The siphon tubes yellowish or brownish orange toward the end, and may be streaked with dark brown, black, or opaque white. The foot is large, muscular, and plow shaped. The mantle lobes are separate along the front and ventral edges of the shell and have thin edges folded into delicate frills, some of which are elongated near the siphons. Foot and mantle edges are white. The veliger larvae can be distinguished from other bivalves by the shape of the shell and hinge structure (Loosanoff et al. 1966; Chanley and Andrews 1971; Lutz et al. 1982). The margin of the shell is circular, tapering toward the hinge; the hinge is short and narrow. ## REASON FOR INCLUSION IN SERIES Hard clams are the most extensively distributed commercial clam in the United States and have the greatest total market value (Ritchie 1977). Their abundance in clean substrates accessible to the public makes the hard clam a popular recreational spe-Their habitat is vulnerable to coastal construction projects and pollution from urban and industrial Because adults do not development. migrate, repopulation of over-fished hard clam beds depends on the transport of larvae from other areas and several years for growth, maturation, Any disturbance. and reproduction. temporary, mav cause however long-term impact. #### LIFE HISTORY #### Spawning The spawning season extends from March through November, depending on latitude and temperature. In temperate climates, spawning is heaviest in July (Carriker 1961). The peak is in May in the York River, Virginia, and is progressively later in Raritan Bay, Jersey, and Narragansett Bay, Rhode Island (Jeffries 1964). Spawning begins in Greenwich Bay, Rhode Island, about the first of June and is completed by mid-July (Landers 1955). In Delaware Bay, spawning lasts from June to October but is most intense in August (Keck et al. 1975). In Chincoteague and Sinepuxent Bays, Maryland, spawning extends from early June through August (Sieling 1956). Individual female hard clams require 2.0 to 2.5 months to complete spawning. but the release of eggs is greatest during the initial spawning of the season (Ansell 1967). Spawning is more intense during neap than during spring tides, presumably because water temperatures are higher during neap tides (Carriker 1961). Water temperature is the decisive factor governing final gamete maturation. In a 2-year study in Lower Little Egg Harbor, New Jersey, the median daily spawning temperature was 25.7°C and the range was 22° to 30°C (Carriker 1961). In Delaware Bav. clams spawn at 25° to 27°C (Keck et al. 1975). About 73% of the clams spawn during the first 2 to 3 days of rising water temperatures (Carriker The required or preferred 1961). water temperature range for spawning is 21° to 25°C (Kennish and Olsson 1975). In England, the clams spawn at a water temperature of 18° to 20°C 1974). (Mitchell When threshold temperatures are reached, males release semen that contains pheromones. The pheromones are carried by water currents to the females, which are stimulated to then release eggs (Nelson and Haskin 1949). Sexual maturity usually is reached during the second year of life. Because size, not age, determines sexual maturity, slower growing individuals mature at an older age. Reproductive potential peaks at 60 mm, but then declines as the clams grow larger (Belding 1931). # Fecundity and Eggs The average number of eggs released by a 60-mm female in nature is about 2 million (Belding 1931). In laboratory tests, the average-sized female released 8 million eggs per season (Davis and Chanley 1956; Ansell 1967). The fecundity of one large female was 16.8 million eggs, whereas small clams (about 33 mm) have far fewer eggs (Bricelj and Malouf 1980). About 2,000 spermatozoa are shed for each ovum. The spherical eggs are 78 µm in diameter and yolk granules are closely packed (Belding 1931). A large gelatinous capsule distinguishes the hard clam egg from the eggs of other mollusks. Eggs are released through the excurrent siphon, and the capsule swells after contact with seawater until it is 3.2 times the diameter of the egg. Because the gelatinous capsule imparts buoyancy, the eggs are pelagic and carried by tidal and coastal currents. Spermatozoa swimming in water come into contact with and penetrate the capsule, fertilizing the egg. After 10 h the embryo developing within the capsule becomes covered with cilia. The lashing of the cilia tears the membrane and gelatinous capsule and the ciliated gastrula escapes into the water. Eggs may be carried as far as 25 km from the spawning site. ## Larvae Trochophore larvae are formed about 12 to 14 h after hatching (Belding 1931). The shape resembles a child's top, and the cilia on the blunt anterior end cause spiral swimming and rotation around the long axis in either direction. A functional mouth develops and the larva begins feeding on suspended particulates, especially dinoflagellates. The larvae concentrate about 1 m below the surface during daylight but at night are more evenly mixed in the water column (Carriker 1952). Acout 24 h after hatching, a shell gland forms opposite the mouth, thin transparent shell is secreted, and the larva becomes a veliger (Belding 1931). The veliger drifts in ocean and estuarine currents, but it is able to move 7 to 8 cm/min vertically by extending the ciliated velum (Mileikovsky 1973). Vertical migration is stimulated by turbulence, which carries veligers into water currents horizontal transport (Carriker 1961). The number of veligers is greatest in the water column 3 h after low tide (Moulton and Coffin 1954). By drifting with the incoming tide, the veligers are transported into the estuary and to Veligers of hard clams sea. abundant in the zooplankton in estuaries during the summer, where densities may exceed 500/1 (Carriker and Coffin Moulton Jeffries 1964). The veliger stage lasts 7 to 30 days, depending on temperature. Metamorphosis of the veliger of the hard clam is a gradual process that takes place 16 to 30 days after hatching at 18°C, 11 to 22 days at 24°C, and 7 to 16 days at 30°C (Loosanoff et al. 1951). #### Juvenile Seed Clam When the veliger becomes 0.2 to 0.3 mm long, the shell thickens, a foot replaces the velum, and a byssal gland develops, indicating metamorphosis to the seed clam. Metamorphosis is inhibited at salinities below 17.5 parts per 20 tο thousand (ppt) (Castagna and Chanley 1973), ensuring that seed clams avoid setting in an environment with salinities unsuitable for adults. Seed clams usually are most abundant in years when freshwater inflow into the estuary is below normal and salinity is above normal (Hibbert 1976). The byssal gland of the seed clam secretes a tough thread, the byssus, which anchors the clam to the substrate. Seed clams set more densely in sand than mud (MacKenzie 1979); bits of shell or detritus may also serve as anchors. In the laboratory, sand is preferred to mud for setting, but the size of sand grains is not important (Keck et al. 1974). Īη Little Egg Harbor, New Jersey, the seed clams prefer to set on a firm surface with a thin layer of detritus (Carriker 1952) or on shells coated with mud (Carriker 1961). The set may exceed 125 clams/m² in good habitat (Carriker 1961): extraordinary sets may be as high as 270,000/m² (Dow and Wallace 1955). The density of the set is not necessarily related to adult concentrations because of movements and mortality of the seed clams. Seed clams seek a preferred habitat -- a sandy or silty bottom with small rocks and shells. They hide under shells or rocks to avoid predators (Lee 1977). The seed clams may reach their ultimate habitat in their second year of life (Burbanck et al. 1956). A 25-mm clam may be tumbled along by currents of 25 cm/sec and deposited behind obstructions (M. Castagna, Va. Inst. Mar. Sci.; pers. comm.). To move, the clam byssus is cast off and the foot is used for locomotion (Belding 1931). When the young clam reaches a desirable habitat, it spins a new byssus and reattaches to a small object. Byssal fibers are used for anchorage until the young clam is 10 mm long; it then metamorphoses and assumes the burrowing habits of the adult. The distribution of seed clams is also altered by predation. Clams that set among oyster shells or stones are protected (Maurer and Watling 1973); without cover, seed clams are subject to heavy predation. Normally they do not live in areas exposed to wave action or strong currents (Anderson et al. 1978), but in
the absence of predators, Carriker (1959) reported that survival on unstable bottoms was possible. #### Adult The adult hard clam lives in the substrate and burrows with a muscular foot. It remains in the location at which it first burrows for remainder of its life. In the first 38 days after first burrowing, adults moved laterally an average of only 5cm and a maximum of 15 cm from the point origin (Chestnut 1951). of Clams 20 to 30 mm long are known to travel as far as 30 cm in 2 months (Kerswill 1941). Adults bury deeper in sand (mean depth 2 cm) than in mud (mean depth 1 cm), and small adults burrow proportionally deeper than larger ones (Stanley 1970). If dug up, the hard clam reburrows, and if covered with overburden it can escape upward (Belding 1931). A clam can escape through 10 to 50 cm of overburden, if the sediment dumped is similar to the local substrate (Kranz 1974). Foreign sediment reduces escapement. The adult is most common in the intertidal and subtidal areas of estuaries and bays. Hard clams are most abundant in the lower estuary and are seldom found in the upper estuary where salinities are lower (Turner 1953). They are absent in places with salinity less than 15 ppt in upper Delaware Bay (Maurer et al. 1974) and in upper Chesapeake Bay (Sieling 1956; Lippson 1973). In Newport River, North Carolina, they are absent in the upper estuary at average salinities less than 19 ppt (Wells 1961). In Greenwich Cove, Maine, clams were about three times more dense at the seaward end of the cove than in the upper cove (Tiller 1950). Hard clams tend to be found in protected locations within bays and estuaries (Loosanoff 1946). In Rand's Harbor, Massachusetts, about 50% of the population lived on the gravel slope, 25% in the muddy channel, and 25% in the subtidal zone (Burbanck et al. 1956). In South Carolina, the clam usually avoids estuaries, but lives in small channels and protected areas (Anderson et al. 1978). In Georgia, hard clams live largely in intertidal areas protected from wave action (Godwin 1968). Loosanoff (1946) also mentioned their intolerance to rough waves. In the Test and Itchen Rivers, England, they are absent above the mean tide line (Hibbert 1976). Some populations are oceanic, e.g., those in the shoals of Nantucket 1953). Sound (Turner An offshore population of hard clams is located between Cape Lookout and Beaufort Inlet. North Carolina (Porter and Chestnut 1962). Reviews by Belding (1931) and Loosanoff (1946) state that hard clams live at depths up to 15 m, whereas Burbanck et al. (1956) reported a maximum depth of 8 m. Hard clams were lacking in 9,000 bottom samples collected at depths greater than 24 m in the mid-Atlantic Bight (Theroux and Wigley 1983). The 1982 landings of about 13 million pounds were taken within 3 mi of the U.S. coast (Thompson 1983). COMMERCIAL/SPORT FISHERIES #### Shellfisheries The hard clam is more widely distributed than any other commercial clam species in U.S. waters and is the most valuable commercial and sport species (Ritchie 1977). The fishery is located chiefly along the mid-Atlantic Bight (Figure 2). North of Cape Cod and in the Gulf of Mexico it is important only in relatively isolated waters (McHugh 1979). Hard clams are taken commercially with hoes, bullrakes, hand tongs, and power dredges (Engle 1970). Of the commercial landings from Narragansett Bay, 90% are taken by handraking (Holmsen 1966), whereas in Chesapeake Bay, 95% of hard clams are taken with patent tongs (Haven and Loesch 1973). Although a power dredge is effective, it is not permitted in many areas, even though it disturbs the substrate no more than bullraking, and all evidence of harvesting disappears within 500 days (Glude and Landers 1953). A power dredge with an escalator increases the catch of the more valuable small clams, but causes disturbance of the substrate (Godcharles 1971). Because dredging destroys seagrasses and benthic algae and recolonization is slow, dredging has a relatively long-term environmental impact. About 6 million kg (meat weight) of hard clam are landed annually along the Atlantic seaboard (McHugh 1979; Thompson 1983). The fishery is Figure 2. Primary areas of hard clam harvest in the mid-Atlantic coastal region. characterized by large fluctuations. The landings in New York and New Jersey were high in the late 1800's, low in the early 1900's, and high again in the late 1940's and early 1950's (McHugh 1977). More recently, production in New York gradually increased from 1.8 million kg in 1960 4.1 million kg in 1976, declined thereafter to 1.5 million kg in 1982 (Table 1). New Jersey had a period of moderate production of about 0.8 million kg from 1961 to 1965, a period of high production of about 1.1 million kg from 1966 to 1971, and a subsequent gradual decline to a low of 0.4 million kg from 1977 to 1982. Hard clam landings for Rhode Island are almost mirror images of those for New Jersey; high production in the early 1960's, low production from 1966 to 1977, and high production from 1979 to 1982. The hard clam fishery in the mid-Atlantic region is most intense in a few bays with large populations. In the mid-1970's about 40% of the U.S. landings were from Great South Bay on Long Island (MacKenzie 1977). areas of high production are Greenwich Bay in Rhode Island (Stringer 1952); Little Egg Harbor, New Jersey (Figley and Townsend 1980); Raritan Bay, between New York and New Jersey 1967); (Jacobson and Gharrett Chincoteague and Sinepuxent Maryland (Sieling 1956). The landings of hard clams in the mid-Atlantic region are about 83% of the U.S. total (Kinoshita and Vondruska 1980). The value of U.S. landings has The U.S. progressively increased. landings (meat weight) declined between 1965 and 1975, but the value per unit increased (Zakaria 1979). The landings were 13.3 million lb valued at \$29.7 million in 1978 Thompson 1979), and million lb worth \$51 million in 1981, and 12.9 million lb worth \$43 million in 1982 (Thompson 1983). The price of hard clams varies with size and the season (Ritchie 1977). Littlenecks (about 46 mm long) command a higher price (\$60/bu) than cherrystones (77 mm, \$22/bu), or chowder clams (97 mm, \$13/bu). Prices in 1983 averaged about \$26/bu. Hard clams are also processed and marketed as clam juice. The market for fresh hard clams is possible because the animals, if kept cool, live for 1 to 3 weeks out of water. The recreational catch of hard clams is not included in the landing data. In New Jersey, one-third of the catch is taken by 21,600 shellfishermen with recreational licenses, and the rest by 1,000 commercial license holders (Figley and Townsend 1980). In the town of Islip, New York, 524,000 bu were taken commercially and 21,000 bu in the recreational fishery (Buckner 1979). Elsewhere, comparison with commercial fisheries is difficult because of differences in the way the catch is reported. In Rehoboth and Indian River Bays, Delaware, the commercial catch was million 0.6 kilograms in 1957 compared to recreational catch of 1 million clams In Massachusetts, (Shuster 1959). commercial fishery was \$788,000 in 1975 and the recreational fishery was worth between \$31,000 and \$195,000 (Conrad 1979). In Great South Bay, New York, the recreational fishery was 4,806 bu in 1977 (Fox 1978), compared with a commercial fishery of about 8 million 1b in 1976 (MacMillan 1978). Because a bushel of hard clams yields about 10 lb of meat (Shuster 1959), the recreational fishery in Great South Bay accounted for only 50,000 lb -- an insignificant amount. In heavily fished areas, many clams are cropped about as soon as they reach a marketable size (Ritchie 1977), i.e., when 3 to 4 years old and 40 to 50 mm long. This method of cropping makes good use of the resource because it leaves the more valuable smaller clams and sufficient Table 1. Hard clam landings (meat weight in thousands of kilograms) in the mid-Atlantic region (Kinoshita and Vondruska 1980). Data for 1980-82 are taken from unpublished records. | | | | | State | | | | | | |------|-------|-------|-------|------------------|-----------------|-----|-----|-----|-------| | Year | RI | NY | NJ | VA | NC | MD | CT | DE | Total | | 1960 | 1,456 | 1,764 | 1,158 | 753 | NA ^a | NA | NA | NA | 5,131 | | 1961 | 1,183 | 1,946 | 765 | 844 | NA | NA | NA | NA | 4,738 | | 1962 | 971 | 2,194 | 608 | 766 | NA | NA | NA | NA | 4,539 | | 1963 | 1,462 | 2,409 | 718 | 951 | NA | NA | NA | NA | 5,540 | | 1964 | 829 | 2,450 | 859 | 1,113 | 116 | 151 | NA | NA | 5,518 | | 1965 | 920 | 2,698 | 850 | 1,128 | 142 | 108 | 68 | 165 | 6,079 | | 1966 | 728 | 2,985 | 1,212 | 844 | 106 | 78 | 111 | 120 | 6,184 | | 1967 | 575 | 3,205 | 1,305 | 844 | 91 | 134 | 109 | 136 | 6,399 | | 1968 | 585 | 3,169 | 1,158 | 848 | 92 | 360 | 109 | 108 | 6,429 | | 1969 | 559 | 3,409 | 1,027 | 863 | 115 | 238 | NA | NA | 6,211 | | 1970 | 490 | 3,586 | 1,168 | 604 | 128 | 257 | NA | NA | 6,233 | | 1971 | 484 | 3,878 | 1,124 | 833 | 115 | 151 | NA | 52 | 6,637 | | 1972 | 399 | 3,856 | 996 | 607 | 124 | 85 | 176 | NA | 6,243 | | 1973 | 420 | 3,287 | 859 | 614 | 172 | 31 | 109 | NA | 5,492 | | 1974 | 381 | 3,641 | 790 | 505 | 130 | 32 | 56 | 46 | 5,581 | | 1975 | 508 | 3,932 | 735 | 494 | 129 | 34 | 54 | 15 | 5,901 | | 1976 | 695 | 4,095 | 677 | 406 | 139 | 16 | 65 | 24 | 6,117 | | 1977 | 719 | 3,869 | 484 | 463 | 335 | 11 | 65 | 18 | 5,964 | | 1978 | 870 | 3,292 | 365 | 226 | 405 | 11 | 81 | 13 | 5,263 | | 1979 | 992 | 2,606 | 407 | 281 | 70 | 9 | 82 | 19 | 4,466 | | 1980 | 1,515 | 2,244 | 383 | 341 | 699 | 19 | 136 | 11 | 5,734 | | 1981 | 2,041 | 2,068 | 419 | 504 ^b | 661 | 29 | <1 | 11 | 7,524 | | 1982 | 1,678 | 1,553 | 412 | 285 | 772 | NA_ | 136 | 18 | 4,854 | a NA = Data not available. From State of Virginia records. brood stock to repopulate the clambeds. #### Population Dynamics Larval hard clams may be one of the most abundant plankters in estu-Larval densities of 25/1 (Carriker 1952) and 572/1 (Carriker 1961) have
been measured. Based on these densities, the author calculated that there would be 50,000 to 1.1 million larvae per square meter in an estuary 2 m deep. There were 50 larvae/l in Wickford Harbor, Rhode Island, which were reduced to larvae/1 by the time of setting (Landers 1953). The number of seed clams that set in Little Egg Harbor, New Jersey, was estimated to be 125/m² (Carriker 1961). Populations of seed clams in Casco Bay, Maine, may reach 270,000/m² (Dow and Wallace 1955). Adult population density varies widely. Populations in Greenwich Bay, Island, ranged from 2 $12/m^2$ (Stickney and Stringer 1957). At some places in Greenwich hard clams density 215/m² (Stringer 1955). densities averaged Populations elsewhere in Nagragansett Bay ranged from 5 to 189/m² (U.S. Department of Interior 1956); the highest average densities were in the Providence River Estuary $(17/m^2)$ and Bristol Harbor $(9/m^2)$. The population density in Nantucket Sound, Massachusetts, was about 0.06/m² (Ropes and Martin 1960). The population density in waters of the Town of Islip, New York, were $16/\text{m}^2$ where fishing was permitted and $30/\text{m}^2$ in closed waters (Buckner 1979). Population densities in Raritan Bay were $11/m^2$ on the New York side and 5/m on the New Jersey side (Campbell 1965). Biomass (meat weight) ranged from $1.6~\mathrm{g/m}^2$ in poor habitat to $36~\mathrm{g/m}^2$ in good habitat of Bay, New York Moriches (0'Conner 1972). Annual recruitment in the James River Estuary, Virginia, $0.84/\text{m}^2$ (Haven 1970). Along the Georgia coast abundance ranged from $0.1/m^2$ to $21/m^2$ (Godwin 1968). Hard clams introduced in Great Britain coastal waters reached densities of 6 to $8/m^2$ (Ansell 1963). Densities of $110/m^2$ and $540/m^2$ in Casco Bay, Maine, were mentioned by Dow (1952). Natural mortality is high in the larval and seed clam stages, almost nil once the shell becomes thick enough to resist predators (Figure 3). Based on densities of different life stages in the field, I calculated monthly mortality coefficients (Z) of $1.7\,$ for the eggs (monthly mortality = 81%) and 1.5 for the larvae (monthly mortality = 78%). In Rhode Island, observed mortality of larvae over the summer was 95% to 97% in Wickford Harbor and 94% to 99.7% in Greenwich Bay (Landers 1955). I calculated an annual mortality coefficient from seed clam to adult of 3.0 mortality = 95%). (annual Ιn Chesapeake Bay, usually less than 10% of small clams survive for 1 year and in some locations none survive (Haven and Loesch 1973). On the basis of nine estimates of adult mortality in England, Hibbert (1976) calculated average annual coefficient of 0.8 (annual mortality = 55%). The mortality coefficient of adult clams held in travs and protected from predators in South Carolina was only 0.13, or about 12% Figure 3. Abundance of hard clams at different life stages, from eggs to adult, based on a composite of the data cited in the text. annually (Eldridge and Eversole 1982). These mortalities represent natural mortality, which was approximately equal to instantaneous total mortality Z in the absence of harvest. Overwinter mortality of hard clams in Maine was 40% (Dow and Wallace 1955). Because hard clams tend to be completely harvested in any particular bed, it was not possible to arrive at a sound estimate of fishing mortality F. Mortality of hard clams smaller than the legal size was estimated to be 30% each time a flat was disturbed by digging (Dow 1953). #### GROWTH CHARACTERISTICS The hard clam grows rapidly in favorable environments. The veliger larvae grow from 10 μm to 200 μm in 7 days in Little Egg Harbor, New Jersey (Carriker 1952). At 18°C the larvae increased from 105 μm to 183 μm in 20 days, whereas at 30°C they grew to this size in 12 days (Loosanoff et al. 1951). The daily percent growth rate of veligers, as a function of temperature and salinity is as follows: Growth = $$-288 + 12.40T + 14.09S$$ - $0.33T^2 - 0.37S^2 + 0.24TS$ where T is the temperature in $^{\circ}$ C and S is the salinity in ppt (Lough 1975). At 20 $^{\circ}$ C and 30 ppt, for example, the daily growth would be 68%. Growth stops at temperatures below 9 $^{\circ}$ C and above 31 $^{\circ}$ C (Ansell 1968). At the end of their first summer, seed clams are about 5 to 7 mm long in New York, and 16 mm long in Florida (Ansell 1968). Annual growth depends on the length of the growing season, which is largely a function of latitude (Figure 4). The average annual growth increments based on shell length, estimated from Figure 4 for ages 2 to 5 years, were about 10 mm in Canada, 13 mm in Maine, 14 mm in New Jersey, and 23 mm in North Carolina Figure 4. Shell lengths of hard clams of different ages from Florida, North Carolina, New Jersey, Maine, and Prince Edward Island, Canada (Ansell 1968). and Florida. Growth increment is about the same during the peak growth period of midsummer regardless of latitude (Ansell 1968). The growth rate of adults slows with increase in length. Clams 35 to 39 mm long grow about three times faster than clams 65 to 69 mm long (Pratt and Campbell 1956). Of interest to resource managers is the time required for clams to reach the minimum legal size (based on shell length), which in most States is reached in about 3 years (Ansell In Rhode Island and Con-1968). necticut, clams reach the 44-mm legal size in about 2.5 years. In New York, the 50-mm minimum size is reached in 3.0 years, whereas in New Jersey the minimum size is reached in 3.3 years. In Chesapeake Bay off Gloucester Point, hard clams require 4 to 5 years to grow to commercial sizes of 38 to 50 mm (Haven 1970). At the extremes of the U.S. range, the legal size is attained in 3 years in Florida at a size of 57 mm and in 5 years in Maine at a size of 51 mm. ECOLOGICAL ROLE #### Food and Feeding Habits Adult hard clams feed by filtering out plankton and micro-organisms that carried along the bottom currents (Chestnut 1951). Hard clams depend on plankton for food before and during spawning to furnish sufficient energy to ripen the gonads (Ansell If the food supply is inadequate, spawning is diminished or nil. In the laboratory, food densities of 300 mg/l of carbon are optimal for deposition of biomass (Tenore Dunstan 1973). Food and other materials are taken in by the clam through the incurrent siphon. Tentacles on the siphon detect excessive concentrations oversized particles in the water and cause the siphon to close. The mantle, visceral mass, and gills are cil-Particles iated and secrete mucus. in through the incurrent siphon attach to the mucus. Deposits on the gills are collected by the cilia and carried towards the mouth (Kellogg 1903). The palps at the mouth entrance determine, by volume, whether the particle mass is ingested or rejected. Only small masses are selected for digestion. Complex patterns of cilia movement remove the waste, called pseudofeces, from palps and gills. Eventually all waste materials are collected on the mantle and carried to the base of the siphon, avoiding the stream of incoming seawater. When sufficient waste has been collected, the adductor muscle suddencontracts. forcibly ejecting a stream of water containing the waste mass from the incurrent siphon (Kellogg 1903). #### Predation Predation is the primary natural control of hard clam populations (Virstein 1977). The clams are preyed on by fish, birds, starfish, crabs, and other mollusks. For defense they burrow or live among shells or rocks. Without shell or rock cover, the juvenile hard clam may be exterminated by predators. In one experiment, survival in penned sites was 94% compared with 9% in an unpenned area (Kraeuter and Castagna 1980). Crabs are the most serious predators of hard clams; in one study 88% of the predators were crabs (Whetstone and Eversole 1978). The crabs crush smaller clams with their claws and chip the edges of the shells of larger clams. A rock crab (Cancer irroratus) consumes up to 30 small clams/h, and a mud crab (Neopanope sayi) consumes up to 14 clams/h (MacKenzie 1977). some areas, mud crabs may be as dense Mortality of young clams as $50/m^2$. parallels the frequency at which shell bits occur in the stomachs of the mud crab Panopeus herbstii (Whetstone and Eversole 1978). Crabs are effective predators because they can pry the clam out of the sediment. The rock crab, blue crab (Callinectes sapidus), and green crab (Carcinides maenas) dig up the clams, whereas mud crabs bury themselves in the sediment to crush the clam in place (MacKenzie 1977). Hard clams longer than 7 mm are not vulnerable to mud crabs, and those longer than 15 mm are not vulnerable to rock crabs (MacKenzie 1977). Mollusks are the next most important predator. Oyster drills (Urosalpinx cinerea and Eupleura caudata) and the moon snails (Polinices duplicata and Lunatia heros) drill holes in the shell and remove the clam's body tissues (Buckley 1974). Hard clams larger than the predator are thick enough to withstand being drilled by moon snails (Kitchell et al. 1981). Whelks (Busycon canaliculatum and B. caria) chip off the outer edge of the shell to make a hole through which they insert their proboscises and ingest the clam's soft parts by alternately rasping and swallowing (Carriker 1951). Hard clams are vulnerable to oyster drills until 20 mm long and to moon snails until 50 mm long (MacKenzie 1977). In addition, the adult hard clam may destroy its own larvae by ingestion. The sea star (Asterias forbesi) pulls the valves of adults apart with its tube feet and inverts its stomach into the body cavity (MacKenzie 1979; If a sea star is Doering 1982a). present, hard clams bury deeper (Pratt and Campbell 1956; Doering 1982b) and reduce activity (Doering 1982c). Fish, such as flounder, and waterfowl also feed on larvae and young clams (Belding 1931). #### ENVIRONMENTAL REQUIREMENTS #### Temperature Water temperature is the most important factor in growth and reproduction. The harvest of
the hard clam in Maine was highly correlated (r = 0.80) to the August sea temperature 2 years previously (Sutcliffe et al. 1977). Dow (1977) recorded a highly significant correlation between mean annual sea temperature and populations of adult hard clams. Hard clams spawn at temperatures of 22° to 30°C in Little Egg Harbor, New Jersey (Carriker 1961) and from 21° to 25°C in Barnegat Bay, New Jersey (Kennish and Olsson 1975). They spawn in Delaware Bay at 25° to 27°C (Keck et al. 1975). Spawning is triggered by rising temperatures. The optimum temperature range for larval growth is 22.5° to 25°C in brackish water and 17.5° to 30°C at a higher salinity (Davis and Calabrese 1964). According to Carriker (1961) larvae tolerate water temperatures of 13° to 30°C. Eggs require temp- eratures above 7.2°C, but larval survival is highest between 19° and 30°C (Lough 1975). Growth is greatest from 22° to 36°C. Embryos and veliger larvae develop abnormally and die at 15°C and 33°C, but straight hinged larvae tolerate these temperature extremes (Loosanoff et al. 1951). The minimum temperature for growth when clams are fed naked dinoflagellates is 12.5°C, but higher temperatures are needed to digest algae (Davis and Calabrese 1964). Adult hard clams tolerate temperatures from below freezing to about 35° C. Adults survive at -6° C, but die when 64% of the water in the tissues has changed to ice (Williams 1970). Hard clams located in bars elevated above the gradient of the mud flats usually suffer 100% winter mortality, almost surely caused by freezing (Dow and Wallace 1951). Summer temperatures as high as 34° C are tolerated (Van Winkle et al. 1976; MacKenzie 1979). Growth is reduced at water temperatures below 10°C (Pratt and Campbell 1956) and growth stops at 8°C (Belding 1931). Hard clams hibernate at temperatures below 6°C (Loosanoff 1939). Pumping water, required for feeding, ceases below 6°C and above 32°C (Hamwi 1968). The extension of the siphon also indicates pumping; the temperature range for siphon extension is 1° to 34°C (Van Winkle et al. 1976). Estimates of the optimum temperature for hard clam growth vary from about 20°C (Ansell 1967) to 23°C (Pratt and Campbell 1956). Other biological activities indicate thermal optima. Hamwi (1968) found maximum pumping at 24° to 26°C. Siphon extension was greatest in the range of 11°C to 22°C (Van Winkle et al. 1976). Storr et al. (1982) reported two optima for shell calcium deposition: 13° to 16°C, and 24°C. Optimum temperatures for burrowing are 21° to 31°C (Savage 1976). Hard clams are adversely affected by rapid temperature changes. A rapid temperature increase of + 5° C in the discharge from a nuclear power plant stopped shell growth (Kennish 1976). The summer growth of hard clams was reduced 60% to 90% when the clams were transplanted to the warmer waters of the discharge site. ## Salinity The salinities at which hard clams are found usually range from about 10 ppt to 35 ppt, allowing for possible differences. Belding geographic (1931) reported 23 to 32 ppt as the general range of tolerance. In Wellfleet Harbor, Massachusetts, salinity in clam beds ranged from 20 to 34 ppt (Curley et al. 1972). The range of salinities in a New York clam habitat was 15 to 35 ppt (MacKenzie 1979). In New Jersey, clams are found only in bays where salinity is above 15 ppt (Figley and Townsend 1980). clams do not live in salinities below 19 ppt in the Newport River Estuary, North Carolina (Wells 1961), or at salinities below 18 ppt in South Carolina (Anderson et al. 1978). The salinities of natural clam beds range from 10 to 28 ppt in the mid-Atlantic region (Loosanoff 1946). Salinity is most critical during the egg and larval stages. The bryos in Long Island Sound develop only in the range of 20 to 32 ppt; at 35 ppt only 10% develop (Davis 1958). Veliger survival is low during high (Carriker 1961). Veliger rainfall growth is best at 20 to 27 ppt. Larvae apparently require higher salinities than adults, and metamorphosis to seed clams is rare below 18 ppt (Castagna and Chanley 1973). Embryos develop normally between 20 and 35 ppt; the optimum is about 28 ppt. The minimum salinity at which larvae survive was 15 ppt. In Southampton Water, England, young clams were abundant only in years of low freshwater inflow from the River Test (Mitchell 1974). Juvenile and adult clams close their shells when exposed to diluted seawater to increase their tolerance to low salinities. Juveniles can live in freshwater for 22 days in the laboratory (Chanley 1958). At 10 ppt they begin dying at 28 days and at 10 and 15 ppt there is little feeding or burrowing. Adult hard clams exposed to salinities as low as 0.3 ppt in the Santee River system in South Carolina survived for 14 days (Burrell 1977). Laboratory tests showed that pumping ceased below 15 ppt and above 40 ppt. and that the rate of pumping was highbetween 23 and 27 ppt (Hamwi 1968). In the laboratory, siphons are rarely extended at salinities below 17 ppt or above 38 ppt (Van Winkle et al. 1976). The optimum salinity range for siphon extension is 24 to 32 ppt. The optimum salinity for larval survival is about 27 ppt (Davis and Calabrese 1964). At about 22 ppt, the temperature tolerance was reduced. A strong interaction between temperature and salinity was reported by Lough (1975). The maximum survival of eggs was above 28 ppt and above 7.2°C. For larvae, survival was highest between 21 and 29 ppt at 19° to 29.5°C. The larvae grew best between 22 and 30 ppt at 22° to 36°C. # Dissolved Oxygen Changes in dissolved oxygen do not affect hard clams as much as changes in temperature and salinity. All life stages survive nearly anoxic conditions for relatively long periods, but Embryos require they stop growing. only 0.5 mg/l dissolved oxygen and die only at oxygen levels below 0.2 mg/l (Morrison 1971). Embryos fail to develop to the trochophore stage when dissolved oxygen is 0.34 mg/l or less. Larval growth is nearly zero at such low oxygen concentrations but picks up at 2.4 mg/l and is best at 4.2 mg/l. Adults tolerated low oxygen in the laboratory, but their metabolism became depressed. The hard clam can tolerate less than 1 mg/l for 3 weeks and still be capable of reburrowing (Savage 1976). Growth is suppressed when oxygen concentrations are low. Below 5 mg/l, oxygen consumption progressively declines and an oxygen debt is incurred (Hamwi 1969). oxygen debt is rapidly repaid in a few hours after return to aerobic conditions. Ultimately, hard clams succumb to hypoxic environments. Hard clams nearly disappeared because of accelerated eutrophication and reduced oxygen in coastal waters near a duck rearing area on Long Island, New York (0'Conner 1972). #### Substrate Numerous studies have shown that hard clams are more likely to live on a sandy bottom than on a mud bottom (Allen 1954; Maurer and Watling 1973; Mitchell 1974). Because water currents sort bottom substrates, there is a high correlation between currents and bottom type; consequently, water circulation may be the decisive element in the distribution of hard clams (Greene et al. 1978). Clam larvae set more frequently and more densely on sand than on mud (MacKenzie 1979). There also appears to be some correlation between grain size and the density of setting (Keck et al. 1974). In a laboratory test, 781 larvae set on mud particles 0.05 mm in diameter whereas 2,083 set on sand particles 0.50 mm in diameter. There was little difference in the densities of setting on sand grain diameters of 0.25, 0.50, 0.71, and 1.00 mm. Larvae much prefer sand (0.25 mm) over mud (0.50 mm), yet the highest concentration of seed clams on shells coated with mud 1961). (Carriker Seed clams can emerge from a depth of sediment at least five times their shell height. Abundance also is related to other substrate. Twice as many hard clams live in gravelly substrate than in mud (Burbanck et al. 1956). The biomass of living clam tissue is related to the type of substrate in Moriches Bay, New₂; sand, 25.5 York, as follows: sand without vegetation $\bar{g}/m_{\bar{2}};$ vegetation, sand with and sand with clayey silt, 1.6 g/m_2^2 ; and sand with clayey silt, 1.0 g/m² (0 Conner 1972). The presence of important was more shells particle size in determining clam abundance in Greenwich Bay, Island. The abundance was as follows: $16/m^2$ in mud, sand and shell; $10/m^2$ in sand and shell; $6/m^2$ in mud and shell, or mud and sand, or sand; and $3/m^2$ in mud (Stringer 1955). The density of hard clams was correlated to the abundance of particles with diameters greater than 2 mm (Saila et al. 1967). Not all reports agree. For example, in the Woods Hole region, Allee (1923) reported a relative density (per m²) of 19 in mud, 14 in sand, 4 in rockweed, 2 in gravel, and 1 in eelgrass. Hard clams in Bogue Sound, North Carolina, tended to be in finer sediments (Brett 1963). The growth of hard clams sometimes reflects the substrate type. Clams grew 50% faster in sand than in mud in Great South Bay, New York (Greene 1975). Clams placed in sand in Narragansett Bay, Rhode Island, grew 24% faster than those placed in mud (Pratt 1953). There was a high correlation (r = 0.88) between shell length and substrate particle size in Little Bay, New Jersey (Johnson 1977). #### Currents Water movement is important to all life stages of the hard clam. Currents transport eggs and larvae and bring food to the adults. Hard clams of Wickford Harbor, Rhode Island, live in current velocities less than 0.5 m/sec (Landers 1953). Larvae prefer currents from 12 to 130 cm/sec (Carriker 1952). Densities of larvae were low near the inlet of an estuary where tidal exchange was greatest and currents fastest (Carriker 1961). The planktonic abundance distribution of larvae is not affected by individual tidal stages, but observations
suggest that the abundance was highest 3 h after low tide (Moulton and Coffin 1954). The growth of adults also is correlated with tidal currents (Kerswill 1949; Haskin 1952; Wells 1957). Hard clams grow better at a velocity of 7.5 cm/sec than in a sluggish slough (Kerswill 1949). Strong currents, however, may scour the bottom and reduce habitat quality (Wells 1957). #### Turbidity Because hard clams filter water to obtain food material, they also trap other suspended material. Discharging this material reduces energy available for growth (Pratt and Campbell 1956). Excess turbidity can clog the filtering apparatus and cause death. Eggs and larvae are also sensitive to turbidity. Embryos develop normally if suspended silt or sediment are present, unless concentrations are unusually high (Davis 1960). above 3 q/1 impedes development, but embryos develop normally waters with 4 g/l of clay, chalk, or Fuller's earth. Embryo development is normal at 2 g/l of particles between 5 and 50 µm diameter. Sand had little effect on eggs except for the smallest particles at the highest concentrations (Davis and Hidu 1969). Larvae are more sensitive than embryos to turbidity. In a laboratory study, 90% of the larvae died at concentrations of chalk above 0.25 g/l and of Fuller's earth above 0.5 g/l (Davis 1960). Larvae tolerate silt up to 4 g/l, and even grow faster in low concentrations of silt than in silt-free water. Larval growth is depressed by concentrations of clay 0.5 g/l and higher (Davis and Hidu 1969). Although turbidity may have profound effects on adult clams, the limits of the reaction of the clams to turbidity is not well defined. Menzel (1963) reported that high turbidity in summer may inhibit the growth of adults in Florida. Another view is that clearing of particles from the filtering apparatus reduces growth in (Pratt and Campbell muddy habitats Adults expelled pseudofeces 1956). produced clams clear when filtering apparatus 107 times/h in mud, 19/h in fine sand, and 7/h in Rhoads et al. (1975) coarse sand. believed that a turbid layer near the bottom in Buzzards Bay, Massachusetts, enhanced the growth of hard clams because it contained detrital food. #### Habitat Alteration Dredging of coastal waters reduces the abundance of hard clams in the area of impact. For example, hard clams in the path of a dredged channel through a lagoon on Long Island, New York, were destroyed, and those on either side of the path were adversely affected by sedimentation (Kaplan et al. 1974). Hard clams further than 400 m from the dredge site were Commercial clammers in unaffected. area reported no noticeable reduction in harvest the following found scientists vear. whereas reduction in standing significant crop. In Boca Ciega Bay, Florida, the hard clam population failed to return to its previous abundance 13 years after dredging (Taylor and Saloman 1968). #### LITERATURE CITED - Abbott, R.T. 1974. American seashells. 2nd ed. Van Nostrand, New York. 663 pp. - Allee, W.C. 1923. Studies in marine ecology. I. The distribution of common littoral invertebrates of the Woods Hole region. Biol. Bull. (Woods Hole) 44(4):167-191. - Allen, J.G. 1954. The influence of bottom sediments on the distribution of five species of bivalves in the Little Annemessex River, Chesapeake Bay. Nautilus 68(2):56-65. - Anderson, W.D., W.J. Keith, F.H. Mills, M.E. Bailey, and J.L. Steimeyer. 1978. A survey of South Carolina's hard clam resources. S. C. Wildl. Mar. Resour. Dep., Mar. Resour. Cent., Tech. Rep. 32. 17 pp. - Ansell, A.D. 1963. <u>Venus mercenaria</u> (L) in Southampton water. Ecology 44(2):396-397. - Ansell, A.D. 1967. Egg production of Mercenaria mercenaria. Limnol. Oceanogr. 12(1):172-176. - Ansell, A.D. 1968. The rate of growth of the hard clam Mercenaria mercenaria (L) throughout the geographical range. J. Cons. Int. Explor. Mer 31:364-409. - Belding, D.L. 1931. The quahaug fishery of Massachusetts. Mass. Dep. Conserv., Div. Fish Game, Mar. Fish. Serv. 2. 41 pp. - Brett, C.E. 1963. Relationships between marine invertebrate infauna distribution and sediment type distribution in Bogue Sound, North Carolina. U.S. At. Energy Comm., Div. Research, Final Rep. Contract No. AT(40-1)2593. Oak Ridge, Tenn., 1202 pp. Diss. Abstr. 24(1964):3288. - Bricelj, V.M., and R.E. Malouf. 1980. Aspects of reproduction of hard clams, Mercenaria mercenaria, in Great South Bay, New York. J. Shellfish Res. 1(1):109 (Abstr.) - Buckley, G.D. 1974. Ecological aspects of some molluscan species of Pleasant Bay, Orleans, Massachusetts. Bull. Am. Malacol. Union 40:13. - Buckner, S.C. 1979. Shellfish management in the Town of Islip. Proc. Symp. Mariculture in N.Y. State. N.Y. Sea Grant Inst. and Cornell Univ. NUSGI-RP-79-01: 13-18. - Burbanck, W.D., M.E. Pierce, and G.C. Whiteley, Jr. 1956. A study of the bottom fauna of Rand's Harbor, Massachusetts: an application of the ecotone concept. Ecol. Monogr. 26(3):213-243. - Burrell, V.G., Jr. 1977. Mortalities of oysters and hard clams associated with heavy runoff in the Santee River system, South Carolina in the spring of 1975. - Proc. Natl. Shellfish. Assoc. 67:35-43. - Campbell, R. 1965. A report on the economically important shellfish resources of Raritan Bay. U.S. Dept. H.E.W., Pub. Health Serv., Northeast Shellfish Reseach Center, Narragansett, R.I. 11 pp. - Carriker, M.R. 1951. Observations on the penetration of tightly closing bivalves by <u>Busycon</u> and other predators. Ecology 32(1):73-83. - Carriker, M.R. 1952. Some recent investigations on native bivalve larvae in New Jersey estuaries. Proc. Natl. Shellfish. Assoc. (1950):69-74. - Carriker, M.R. 1959. The role of physical and biological factors in the culture of <u>Crassostrea</u> and <u>Mercenaria</u> in a salt-water pond. Ecol. Monogr. 29(3):219-266. - Carriker, M.R. 1961. Interrelations of functional morphology, behavior, and autecology in early stages of the bivalve Mercenaria mercenaria. J. Elisha Mitchell Sci. Soc. 77(2):168-241. - Castagna, M., and P. Chanley. 1973. Salinity tolerance of some marine bivalves from inshore and estuarine environments in Virginia waters of the western mid-Atlantic coast. Malacologia 12(1):47-96. - Chanley, P.E. 1958. Survival of some juvenile bivalves in water of low salinity. Proc. Natl. Shellfish. Assoc. 48:52-65. - Chanley, P., and J.D. Andrews. 1971. Aids for identification of bivalve larvae of Virginia. Malacologia 11(1):45-119. - Chestnut, A.F. 1951. The oyster and other mollusks in North Carolina. - Pages 141-190 in H.F. Taylor, ed. Survey of marine fisheries of North Carolina. University of North Carolina Press, Chapel Hill. - Conrad, J.M. 1979. Management of the Northeast clam resource: commercial and recreational considerations. Pages 121-129 in Proc. Northeast Clam I n d u s t r i e s: management for the future. Ext. Sea Grant Advisory Program, U. Mass., and MIT Sea Grant Program, SP-112. - Curley, J.R., R.L. Lawton, D.K. Whitaker, and J.M. Hickey. 1972. A study of the marine resources of Wellfleet Harbor. Mass. Dep. Nat. Resour. Div. Mar. Fish. Monogr. 12. 37 pp. - Davis, H.C. 1958. Survival and growth of clam and oyster larvae at different salinities. Biol. Bull. (Woods Hole) 114(3):296-307. - Davis, H.C. 1960. Effects of turbidity-producing materials in sea water on eggs and larvae of the clam (Venus (Mercenaria) mercenaria). Biol. Bull. (Woods Hole) 118(1):48-54. - Davis, H.C., and A. Calabrese. 1964. Combined effects of temperature and salinity on development of eggs and growth of larvae of M. mercenaria and C. virginica. U.S. Fish Wildl. Serv. Fish. Bull. 63(3):643-655. - Davis, H.C., and P.E. Chanley. 1956. Spawning and egg production of oysters and clams. Biol. Bull. (Woods Hole) 110(2):117-128. - Davis, H.C., and H. Hidu. 1969. Effects of turbidity-producing substances in sea water on eggs and larvae of three genera of bivalve mollusks. Veliger 11(4):316-323. - Doering, P.H. 1982a. Observations on the behavior of Asterias forbesi feeding on Mercenaria mercenaria. Ophelia 20(2):169-177. - Doering, P.H. 1982b. Reduction of sea star predation by the burrowing response of the hard clam Mercenaria mercenaria (Mollusca: Bivalvia). Estuaries 5(4):310-315. - Doering, P.H. 1982c. Reduction of attractiveness to the sea star Asterias forbesi (Desor) by the clam Mercenaria mercenaria (Linnaeus). J. Exp. Mar. Biol. Ecol. 60(1):47-61. - Dow, R.L. 1952. Shellfish survey methods. Maine Dep. Sea Shore Fish. Tech. Bull. 1:1-18. - Dow, R.L. 1953. An experimental program in shellfish management. Maine Dep. Sea Shore Fish. Circ. 10:1-9. - Dow, R.L. 1977. Effects of climatic cycles on the relative abundance and availability of commercial marine and estuarine species. J. Cons. Int. Explor. Mer 37(3): 274-280. - Dow, R.L., and D.E. Wallace. 1951. A method of reducing winter mortalities of quahogs (Venus mercenaria) in Maine waters. Maine Dep. Sea Shore Fish. Res. Bull. 4:3-31. - Dow, R.L., and D.E. Wallace. 1955. Natural redistribution of a quahog population. Science 122:641-642. - Eldridge, P.J., and A.G. Eversole. 1982. Compensatory growth and mortality of the hard clam, Mercenaria mercenaria (Linnaeus, 1758). Veliger 24(3):276-278. - Engle, J.B. 1970. Oyster and clam managment. Pages 263-276 in N.G. Benson, ed. A century of fish- - eries in North America. Am. Fish. Soc., Washington, D.C., Spec. Pub. 7. - Figley, B., and R. Townsend. 1980. Fish facts: hard clam. The Fisherman (New Jersey, Delmarva and Hatteras) 8(36):15. - Fox, R.E. 1978. An estimate of the recreational hard clam harvest from Great South Bay, New York. N.Y. State Dep. Environ. Conserv., Stony Brook, N.Y., PL 88-309, Proj. 3-263-R, Natl. Mar. Fish. Serv. 5 pp. - Glude, J.B., and W.S. Landers. 1953. Biological effects of bullraking vs. power dredging on a population of hard shell clams, Venus mercenaria. Convention addresses Natl. Shellfish. Assoc. 1951:47-69. - Godcharles, M.F. 1971. A study of the effects of a commercial hydraulic clam dredge on benthic
communities in estuarine areas. Fla. Dep. Nat. Resour. Mar. Res. Lab., Tech. Ser. 64. 51 pp. - Godwin, W.F. 1968. The distribution and density of the hard-clam, Mercenaria mercenaria, on the Georgia coast. Ga. Game Fish. Comm., Mar. Fish. Div., Brunswick, Ga. Contrib. Ser. 10. 30 pp. - Greene, G.T. 1975. Incremental shell growth patterns as affected by environment in Mercenaria mercenaria. Unpublished B.A. Thesis. Princeton University, Princeton, N.J. 77 pp. - Greene, G.T. 1979. Growth of clams (Mercenaria mercenaria) in Great South Bay, New York. Proc. Natl. Shellfish. Assoc. 69:194-195. (Abstr.) - Greene, G.T., A.C.F. Mirchel, W.J. Behrens, and D.S. Becker. 1978. - Superficial sediment and seagrasses of eastern Great South Bay N.Y. Mar. Sci. Res. Cent., State Univ. of N.Y. Stony Brook, Spec. Rep. 12, 77-79. 30 pp. - Hamwi, A. 1968. Pumping rate of Mercenaria mercenaria as a function of salinity and temperature. Proc. Natl. Shellfish. Assoc. 58:4. (Abstr.) - Hamwi, A. 1969. Oxygen consumption and pumping rate of the hard clam Mercenaria mercenaria L. Ph.D. Thesis. Rutgers University, New Brunwick, N. J. 185 pp. - Haskin, H.H. 1952. Further growth studies on the quahaug, Venus mercenaria. Proc. Natl. Shell-fish. Assoc. 42:181-187. - Haven, D. 1970. A study of the hard and soft clam resources of Virginia. U.S. Fish. Wildl. Serv., Comm. Fish. Resour. Devel. Act, Final Contract Rep. 69 pp. - Haven, D.S., and J.G. Loesch. 1973. Summary, conclusions, and recommendations based on an investigation into commercial aspects of the hard clam fishery and development of commercial gear for the harvest of molluscs. Va. Inst. Mar. Sci. Gloucester Point, VA. 108 pp. - Hibbert, C.J. 1976. Biomass and production of a bivalve community on an intertidal mud-flat. J. Exp. Mar. Biol. Ecol. 25(3): 249-261. - Holmsen, A.A. 1966. The economics of dredging quahogs in Rhode Island. Maritimes 9(3):10-13. - Hutchinson, R.W., and J. Knutson. 1978. Shellfish market review, November 1978. U.S. Dep. Commer. Natl. Mar. Fish Serv. Curr. Econ. Anal. S-41:1-48. - Jacobson, F.L., and J.T. Gharrett. 1967. Joint statement at Conf. on pollution of Raritan Bay and adjacent interstate waters. Fed. Water Pollut. Control Admin., U.S. Dep. Int. 3rd Sess. 2:683-698. - Jeffries, H.P. 1964. Comparative studies on estuarine zooplankton. Limnol. Oceanogr. 9(3):348-358. - Johnson, J.K. 1977. A study of the shell length of Mercenaria mercenaria in relation to bottom sediments of Little Bay, New Jersey. Bull. N. J. Acad. Sci. 22(2):52. (Abstr.) - Kaplan, E.H., J.R. Walker, and M.G. Kraus. 1974. Some effects of dredging on populations of macrobenthic organisms. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 72(2):445-480. - Keck, R., D. Maurer, and R. Malouf. 1974. Factors influencing the setting behavior of larval hard clams, Mercenaria mercenaria. Proc. Natl. Shellfish. Assoc. 64:59-67. - Keck, R.T., D. Maurer, and H. Lind. 1975. A comparative study of the hard clam gonad developmental cycle. Biol. Bull. (Woods Hole) 148(2):143-258. - Kellogg, J.L. 1903. Feeding habits and growth of <u>Venus mercenaria</u>. N.Y. State Mus. Bull. 71. 27 pp. - Kennish, M.J. 1976. Monitoring thermal discharges: a natural method. Underwat. Nat. 9(4):8-11. - Kennish, M.J., and R.K. Olsson. 1975. Effects of thermal discharges on the microstructural growth of Mercenaria mercenaria. Environ. Geol. 1:41-64. - Kerswill, C.J. 1941. Some environmental factors limiting growth and - distribution of the quahaug <u>Venus</u> mercenaria L. Ph.D. Thesis. <u>Univ.</u> Toronto, Ont., Canada. 104 pp. - Kerswill, C.J. 1949. Effects of water circulation on the growth of quahaugs and oysters. J. Fish. Res. Board Can. 7(9):545-551. - Kinoshita, R.K., and J. Vondruska. 1980. Shellfish market review., U.S. Dep. Commer., Natl. Mar. Fish. Serv. Curr. Econ. Anal. S-42. 56 pp. - Kitchell, J.A., C.H. Boggs, J.F. Kitchell, and J.A. Rice. 1981. Prey selectivity by naticid gastropods experimental tests and application to the fossil record. Paleobiol. 7(4):533-552. - Kraeuter, J.N., and M. Castagna. 1980. Effects of large predators on the field culture of the hard clam, Mercenaria mercenaria. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 78(2):538-541. - Kranz, P.M. 1974. The anastrophic burial of bivalves and its paleoecological significance. J. Geol. 82:237-265. - Landers, W.S. 1953. Spawning and setting of Venus mercenaria in Wickford Harbor, 1950-1952. U.S. Fish Wildl. Serv. Clam Invest. Conf. Clam Res. 4:30-31. - Landers, W.S. 1955. Summary of early life history studies of the hard clam in Rhode Island. U.S. Fish Wild. Serv. Clam Invest. Conf. Clam Res. 5:9-11. - Lee, H. 1977. Use of shells found a good way to save clams from predators. Natl. Fisherman 57(1): 11A. - Lippson, A.J., ed. 1973. The Chesapeake Bay in Maryland -- an atlas of natural resources. Natural Resources Inst., Univ. - Md., Contr. 500, Johns Hopkins Univ. Press, Baltimore, MD. 56 pp. - Loosanoff, V.L. 1939. Effect of temperature upon shell movements of clam, Venus mercenaria (L.). Biol. Bull. (Woods Hole) 76(2): 171-182. - Loosanoff, V.L. 1946. Commercial clams of the Atlantic coast of the United States. U.S. Fish Wildl. Serv. Bur. Commer. Fish. Fish. Leafl. 13. 12 pp. - Loosanoff, V.L., H.C. Davis, and P.E. Chanley. 1966. Dimensions and shapes of larvae of some marine bivalve mollusks. Malacologia 4(2):351-435. - Loosanoff, V.L., W.S. Miller, and P.B. Smith. 1951. Growth and setting of larvae of Venus mercenaria in relation to temperature. J. Mar. Res. 10(1):59-81. - Lough, R.G. 1975. A reevaluation of the combined effects of temperature and salinity on the survival and growth of bivalve larvae using response surface techniques. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 73(1):86-94. - Lutz, R., J. Goodsell, M. Castagna, S. Chapman, C. Newell, H. Hidu, R. Mann, D. Jablonski, V. Kennedy, S. Siddall, R. Goldberg, H. Beattie, C. Falmagne, A. Chestnut, and A. Partridge. 1982. Preliminary observations on the usefulness of hinge structures for identification of bivalve larvae. J. Shellfish. Res. 2(1):65-70. - MacKenzie, C.L., Jr. 1977. Predation on hard clam (Mercenaria mercenaria) populations. Trans. Am. Fish. Soc. 106(6):530-537. - MacKenzie, C.L., Jr. 1979. Relation of biological and environmental fac- - tors to soft-shell and hard-shell clam management. Pages 67-78 in Proceedings of the Northeast clam industries: management for the future. Ext. Sea Grant Advisory Program, U. Mass. and MIT Sea Grant Program SP-112. - MacMillan, B. 1978. Problems in classifying the Great South Bay. W.R. Hess, Jr., ed. Pages 265-278 in W.R. Hess, Jr., ed. Proc. Interstate Seafood Seminar, Oct. 4 to 7, 1977. Va. Polytechnic Inst. and State Univ. Extension Div. and Dep. Food Sci. Technol. Seafood Processing Research and Extension Unit, Hampton, Va. - Maurer, D., and L. Watling. 1973. Studies on the oyster community in Delaware: the effects of the estuarine environment on the associated fauna. Int. Rev. Gesamten Hydrobiol. 58(2):161-201. - Maurer, D., L. Watling, and G. Aprill. 1974. The distribution and ecology of common marine and estuarine pelecypods in the Delaware Bay Area. Nautilis 88(2):38-45. - McHugh, J.L. 1977. Fisheries and fishery resources of New York Bight. U.S. Dep. Comm., Natl. Mar. Fish. Serv. NOAA Tech. Rep. NMFS Cir. 401. 51 pp. - McHugh, J.L. 1979. United States clam industry: where is it going? Pages 7-24 in Proceedings of the Northeast clam industries: management for the future. Ext. Sea Grant Advisory Program, Univ. Mass. and M.I.T. Sea Grant Program SP-112. - McHugh, J.L., M.W. Summer, P.J. Flagg, D.W. Lipton, and W.J. Behrens. 1982. Annotated bibliography of the hard clam (Mercenaria mercenaria). NOAA Tech. Rep. U.S. Natl. Mar. Fish. Serv. SSRF-756. 845 pp. - Menzel, R.W. 1963. Seasonal growth of the northern quahog, Mercenaria mercenaria and the southern quahog, M. campechiensis, in Alligator Harbor, Florida. Proc. Natl. Shellfish. Assoc. 52:37-46. - Mileikovsky, S.A. 1973. Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position. Mar. Biol. (Berl.) 23(1):11-17. - Mitchell, R. 1974. Aspects of the ecology of the lamellibranch Mercenaria mercenaria in British water. Hydrobiol. Bull. 8:124-138. - Morris, P.A. 1973. A field guide to the shells of the Atlantic and Gulf coasts and the West Indies. 3rd ed. W. J. Clench, ed. Houghton Mifflin Co., Boston. 330 pp. - Morrison, G. 1971. Dissolved oxygen requirements for embryonic and larval development of the hardshell clam Mercenaria mercenaria. J. Fish. Res. Board Can. 28(3): 379-381. - Moulton, J.M., and G.W. Coffin. 1954. The distribution of <u>Venus</u> larvae in Orr's Cove plankton over the tidal cycle and during the summer and early fall of 1953. Maine Dep. Sea Shore Fish. Res. Bull. 17:1-51. - Nelson, T.C., and H.H. Haskin. 1949. On the spawning behavior of oysters and of <u>Venus mercenaria</u> with special reference to the effects of spermatic hormones. Anat. Rec. 105(3):484-485. - O'Conner, J.S. 1972. The benthic macrofauna of Moriches Bay, New York. Biol. Bull. (Woods Hole) 142(1):84-102. - Pileggi, J., and B.G. Thompson. 1979. Fisheries of the United States - 1978. U.S. Natl. Mar. Fish. Serv. Curr. Fish. Stat. 7800. 120 pp. - Porter, H.J., and A.F. Chestnut. 1962. The offshore clam fishery of North Carolina. Proc. Natl. Shellfish. Assoc. 51:67-63. - Pratt, D.M. 1953. Abundance and growth of <u>Venus mercenaria</u> and <u>Callocardia morrhuana</u> in relation to the character of bottom sediments. J. Mar. Res. 12(1):60-74. - Pratt, D.M., and D.A. Campbell. 1956. Environmental factors affecting growth in <u>Venus mercenaria</u>. Limnol. Oceanogr. 1(1):2-17. - Rhoads, D.C., K. Tenore, and M. Browne. 1975. The role of resuspended bottom mud in nutrient cycles of shallow embayments. Pages 565-579 in L.E. Cronin, ed. Estuarine research. Vol. 1. Chemistry, biology, and the estuarine system. Academic Press, New York. - Ritchie, T.P. 1977. A
comprehensive review of the commercial clam industries in the United States. U.S. Natl. Mar. Fish. Serv., Del. Sea Grant Program, Coll. Mar. Stud., Univ. Del., Newark and Lewes, Del. DEL-SG-26-76. 106 pp. - Ropes, J.W., and C.E. Martin. 1960. The abundance and distribution of hard clams in Nantucket Sound, Massachusetts, 1958. U.S. Fish Wildl. Serv. Spec. Sci. Rep. Fish. 254. 12 pp. - Saila, S.B., J.M. Flowers, and M.T. Cannario. 1967. Factors affecting the relative abundance of Mercenaria mercenaria in the Providence River, Rhode Island. Proc. Natl. Shellfish. Assoc. 57:83-89. - Savage, N.B. 1976. Burrowing activity in Mercenaria mercenaria (L.) and Spisula solidissima (Dwillwyn) as a function of temperature and dissolved oxygen. Mar. Behav. Physiol. 3(4):221-234. - Shuster, C.M., Jr. 1959. A biological evaluation of the Delaware River Estuary. Univ. Del. Mar. Lab., Info. Ser. 3. 77 pp. - Sieling, F.W. 1956. The hardshell clam fishery of Maryland waters. Md. Tidewater News 12(10), suppl. 9. 2 pp. - Stanley, S.M. 1970. Relation of shell form to life habits of the bivalves (Mollusca). Geol. Soc. Am. Mem. 125. 296 pp. - Stickney, A.P., and L.D. Stringer. 1957. A study of the invertebrate bottom fauna of Greenwich Bay, Rhode Island. Ecology 38:111-121. - Storr, J.F., A.L. Costa, and D.A. Prawel. 1982. Effects of temperature on calcium deposition in the hard-shell clam Mercenaria mercenaria. J. Therm. Biol. 7(1):57-61. - Stringer, D. 1952. Quahaug productivity studies in Greenwich Bay. U.S. Fish Wildl. Serv. Clam Invest. Amer. Conf. Clam Res. 3:21-23. - Stringer, L.D. 1955. Greenwich Bay hard clam productivity studies. U.S. Fish Wildl. Serv. Clam Invest. Conf. Clam Res. 5:1-9. - Sutcliffe, W.H., Jr., K. Drinkwater, and B.S. Muir. 1977. Correlations of fish catch and environmental factors in the Gulf of Maine. J. Fish. Res. Board Can. 34:19-30. - Taylor, J.F., and C.H. Saloman. 1968. Some effects of hydraulic dredging and coastal development in Boca Ciega Bay, Florida. U.S. - Fish Wildl. Serv. Fish. Bull. 67(2):213-241. - Tenore, K.R., and W.M. Dunstan. 1973. Comparison of feeding and biodeposition of three bivalves at different food levels. Mar. Biol. (Berl.) 21:190-195. - Theroux, R.B., and R.L. Wigley. 1983. Distribution and abundance of east coast bivalve mollusks based on specimens in the National Marine Fisheries Service, Woods Hole Collection. NOAA Tech. Rep. NMFS-SSRF-768 U.S. Dep. Commer. Natl. Mar. Fish. Serv. 172 p. - Thompson, B.G. 1983. Fisheries of the United States. Curr. Fish. Stat. No. 8300. U.S. Natl. Mar. Fish. Serv. Dep. Commer. 118 p. - Tiller, R.E. 1950. Greenwich Cove Survey. U.S. Fish Wildl. Serv. Clam Invest. Conf. Clam Res. 1:18-19. - Turner, H.J., Jr. 1953. A review of the biology of some commercial molluscs of the east coast of North America. Sixth Rep. Invest. Shellfish. Mass., Mass. Dep. Nat. Resour. Div. Mar. Fish: 39-74. - U.S. Department of the Interior. 1956. A preliminary report on fishery resources in relation to the hurricane damage control program for Narragansett Bay and vicinity, Rhode Island and Massachusetts. U.S. Fish Wildl. Serv., Office River Basin Stud., Boston, MA. 34 pp. - Van Winkle, W., S.Y. Feng, and H.H. Haskin. 1976. Effect of temperature and salinity on extension of siphons by Mercenaria mercenaria. J. Fish. Res. Board Can. 33(7): 1540-1546. - Verrill, A.E. 1873. VIII. Report upon the invertebrate animals of Vineyard Sound and the adjacent waters, with an account of the physical characteristics of the region. Pages 295-522 in Report on the condition of the sea fisheries of the south coast of New England in 1871 and 1872. U.S. Comm. Fish., Washington, D.C. - Virnstein, R.W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58(6):1199-1217. - Wells, H.W. 1957. Status of the name Venus. Ecology 38(1):160-161. - Wells, H.W. 1961. The fauna of oyster beds with special reference to the salinity factor. Ecol. Monogr. 31:239-266. - Whetstone, J.M., and A.G. Eversole. 1978. Predation on hard clams, Mercenaria mercenaria, by mud crabs, Panopeus herbstii. Proc. Natl. Shellfish Assoc. 68:42-48. - Williams, R.J. 1970. Freezing tolerance in Mytilus edulis. Comp. Biochem. Physiol. 35(1):145-161. - Wright, D.A., V.S. Kennedy, W.H. Rosenburg, M. Castagna, and J.A. Mihursky. 1983. Temperature tolerance of embryos and larvae of five bivalve species under simulated power plant entrainment conditions: a synthesis. Maine Biol. 77(3):271-278. - Zakaria, S.P. 1979. Depuration as it relates to the hard shell clam of Narragansett Bay, Rhode Island. Pages 109-119 in Proceedings of the Northeast clam industries: management for the future. Ext. Sea Grant Advisory Program, Univ. Mass. and MIT Sea Grant Program. SP-112. | 502 | 72 - | 101 | |-----|------|-----| |-----|------|-----| | 3. Recipient's Accession No. | |---| | Requirements February 1985 - Hard Clam | | 8. Parforming Organization Rept. No | | 10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) | | (G) | | f Engineers ent Station | | 180 | | | #### 15. Supplementary Notes *U.S. Army Corps of Engineers Report No. TR EL-82-4. #### 16. Abstract (Limit: 200 words) Species profiles are literature summaries on the taxonomy, morphology, range, life history, and environmental requirements of coastal aquatic species. They are designed to assist in environmental impact assessment. The hard clam (Mercenaria mercenaria) is the most extensively distributed commercial clam in the United States. They spawn offshore in summer when water temperatures are between 18° and 30°C. The eggs and larvae are carried by currents into estuaries, where seed clams set on sand or pebbles. Seed clams that lack cover of shells or stone largely perish because of predation. Adults filter-feed on phytoplankton and particulate material. Adults survive temperatures of -6° to 30°C and salinities of 10 to 35 ppt, and can withstand freshwater for several days by closing their shell. When the shell is closed, they must tolerate anoxic conditions, and they survive less than 1 mg/l oxygen in the water for several days. Even the larvae tolerate 0.5 mg/l of oxygen. #### 17. Document Analysis e. Descriptors Estuaries Clams Growth Feeding b. Identifiers/Open-Ended Terms Hard clam Mercenari<u>a</u> mercenaria Habitat Salinity requirements c. COSATI Field/Group Temperature requirements Spawning Fisheries | 19. Security Class (This Report) | 21. No. of Pages | | | |----------------------------------|---|--|--| | Unclassified | 24 | | | | 20. Security Class (This Page) | 22. Price | | | | | ļ · · · · · · · · · · · · · · · · · · · | | | #### **REGION 1** Regional Director U.S. Fish and Wildlife Service Lloyd Five Hundred Building, Suite 1692 500 N.E. Multnomah Street Portland, Oregon 97232 #### **REGION 4** Regional Director U.S. Fish and Wildlife Service Richard B. Russell Building 75 Spring Street, S.W. Atlanta, Georgia 30303 ## **REGION 2** Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquerque, New Mexico 87103 # **REGION 5** Regional Director U.S. Fish and Wildlife Service One Gateway Center Newton Corner, Massachusetts 02158 ## **REGION 7** Regional Director U.S. Fish and Wildlife Service 1011 E. Tudor Road Anchorage, Alaska 99503 # **REGION 3** Regional Director U.S. Fish and Wildlife Service Federal Building, Fort Snelling Twin Cities, Minnesota 55111 # **REGION 6** Regional Director U.S. Fish and Wildlife Service P.O. Box 25486 Denver Federal Center Denver, Colorado 80225 # **DEPARTMENT OF THE INTERIOR**U.S. FISH AND WILDLIFE SERVICE As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.